Recursive computational formulas of the least squares criterion functions for scalar system identification
نویسندگان
چکیده
منابع مشابه
Multiple Concurrent Recursive Least Squares Identification
A new algorithm, multiple concurrent recursive least squares (MCRLS) is developed for parameter estimation in a system having a set of governing equations describing its behavior that cannot be manipulated into a form allowing (direct) linear regression of the unknown parameters. In this algorithm, the single nonlinear problem is segmented into two or more separate linear problems, thereby enab...
متن کاملKernel Recursive Least Squares
We present a non-linear kernel-based version of the Recursive Least Squares (RLS) algorithm. Our Kernel-RLS algorithm performs linear regression in the feature space induced by a Mercer kernel, and can therefore be used to recursively construct the minimum meansquared-error regressor. Sparsity (and therefore regularization) of the solution is achieved by an explicit greedy sparsification proces...
متن کاملRecursive Least Squares Estimation
We start with estimation of a constant based on several noisy measurements. Suppose we have a resistor but do not know its resistance. So we measure it several times using a cheap (and noisy) multimeter. How do we come up with a good estimate of the resistance based on these noisy measurements? More formally, suppose x = (x1, x2, . . . , xn) T is a constant but unknown vector, and y = (y1, y2, ...
متن کاملHierarchic Kernel Recursive Least-Squares
We present a new hierarchic kernel based modeling technique for modeling evenly distributed multidimensional datasets that does not rely on input space sparsification. The presented method reorganizes the typical single-layer kernel based model in a hierarchical structure, such that the weights of a kernel model over each dimension are modeled over the adjacent dimension. We show that the impos...
متن کاملAn order downdating algorithm for tracking system order and parameters in recursive least squares identification
In this correspondence, a new time and order recursive method for on-line tracking of system order and parameters using recursive least squares (RLS) is presented. The method consists of two parts: a time updating portion that uses existing RLS inverse QR decomposition algorithms and a new computationally efficient “order downdating” portion that calculates the model parameters and residual err...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 2014
ISSN: 0307-904X
DOI: 10.1016/j.apm.2013.05.059